
249 249

249 249

241

R����� �� BCTCS 2005
The 21st British Colloquium for Theoretical Computer Science

21-24 March 2005, Nottingham, England

Graham Hutton

The British Colloquium for Theoretical Computer Science (BCTCS) is a forum
for researchers in theoretical computer science to meet, present research findings,
and discuss developments in the field. It also provides an environment for PhD
students to gain experience in presenting their work in a wider context, and benefit
from contact with established researchers.

The scope of the colloquium includes all aspects of theoretical computer sci-
ence, including automata theory, algorithms, complexity theory, semantics, formal
methods, concurrency, types, languages and logics. Both computer scientists and
mathematicians are welcome to attend, as are non-UK participants.

BCTCS 2005 was held at the University of Nottingham from 21-24 March
2005. The event attracted 80 participants, and featured an interesting and wide
ranging programme of 4 invited talks, 2 invited tutorials, and 47 contributed talks.
Edited abstracts of all the talks are provided below. Further details, including
on-line copies of the slides from the talks, are available from the BCTCS web-
site at http://www.bctcs.ac.uk/. The financial support of the Engineering
and Physical Sciences Research Council (EPSRC) and the London Mathematical
Society (LMS) is gratefully acknowledged.

BCTCS 2006 will be held at the University of Wales Swansea from 4-7 April
2006. Researchers and PhD students wishing to contribute talks concerning any
aspect of theoretical computer science are warmly welcomed to do so. Further
details are available from: http://www.bctcs.ac.uk.

Invited Talks
Alan Gibbons, King’s College London; Martyn Amos, University of Exeter
The Soft Machines: Computing with the Code of Life
Cellular computing is a new, rapidly expanding field of research at the intersection
of biology and computer science. It is becoming clear that, in the 21st century,
biology will be characterized more often as an information science. The flood of
data generated first by the various genome projects, and now by large-throughput
gene expression, has led to increasingly fruitful collaborations between biologists,
mathematicians and computer scientists. However, until recently, these collabo-
rations have been largely one-way, with biologists taking mathematical expertise
and applying it in their own domain. With the onset of molecular and cellular com-
puting, though, the flow of information has been growing in the reverse direction.



250 250

250 250

BEATCS no 86 REPORTS FROM CONFERENCES

242

Computer scientists are now modifying biological systems to obtain computing
devices. Cells are being re-engineered to act as microbial processors, smart sen-
sors, drug delivery systems and many other classes of device. This talk traces the
brief history of cellular computing and suggests where its future may lie.
Andrew Gordon, Microsoft Research, Cambridge
Samoa: Formal Tools for Securing Web Services
An XML web service is, to a first approximation, a wide-area RPC service in
which requests and responses are encoded in XML as SOAP envelopes, and trans-
ported over HTTP. Applications exist on the internet (for programmatic access to
search engines and retail), on intranets (for enterprise systems integration), and
between intranets (for the e-science Grid and for e-business). Specifications (such
asWS-Security) and toolkits (such as Microsoft’s WSE product) exist for securing
web services by applying cryptographic transforms to SOAP envelopes.

The underlying principles, and indeed the di�culties, of using cryptography
to secure RPC protocols have been known for many years, and there has been a
sustained and successful e�ort to devise formal methods for specifying and veri-
fying the security goals of such protocols. One line of work, embodied in the spi
calculus of Abadi and Gordon and the applied pi calculus of Abadi and Fournet,
has been to represent protocols as symbolic processes, and to apply techniques
from the theory of the pi calculus, including equational reasoning, type-checking,
and resolution theorem-proving, to attempt to verify security properties such as
confidentiality and authenticity, or to uncover bugs.

The goal of the Samoa Project is to exploit these recent theoretical advances
in the analysis of security protocols in the practical setting of XML web services.
This talk will present some of the outcomes of our research, including: automatic
analysis of hand-written pi-calculus descriptions of WS-Security protocols; au-
tomatic generation of pi-calculus descriptions from WSE config and policy files;
and formal analysis of the WS-Trust and WS-SecureConversation specifications.
Ralf Hinze, University of Bonn
Number Systems and Data Structures
Data structures are a lot like number systems: adding an element to a container
corresponds to incrementing a number, deleting an element from a container cor-
responds to decrementing a number. This talk takes a closer look at the intimate
relationship between data structures and number systems. We show, in particular,
how number systems with certain properties can be utilised in the design and anal-
ysis of data structures. To this end, we discuss various number systems – some
well-known, some less so – and show how operations on container types can be
modelled after their number-theoretic counterparts. As a worked-out example, we
introduce a variant of finger trees that supports deque operations in amortised con-
stant time, and concatenation and splitting in time logarithmic in the size of the



251 251

251 251

The Bulletin of the EATCS

243

smaller piece. Finally, we exhibit the number systems that underly well-known
data structures such as red-black trees and 1-2 brother trees.
Rajeev Raman, University of Leicester
Succinctness
There are now good reasons to be re-assessing the space requirements of data
structures. This survey will address the following two questions: what space
bounds should we be aiming to achieve, and how do we achieve these space
bounds and allow e�cient operations? We will be using large text indices and
XML data as motivating examples.

Invited Tutorials
Roland Backhouse, University of Nottingham
Games for Algorithmic Problem Solving
Combinatorial games provide a very fruitful source of examples of algorithmic
problem solving because they are all about winning – identifying an algorithm that
will guarantee that you win and your opponent loses! The theory of combinatorial
games is also a fruitful source of illustrations of advanced algebraic structures
(fields, vector spaces etc.), with the advantage that the problems are concrete and
easily understood, but their solution is often very di�cult.

This tutorial focuses on using combinatorial games to illustrate important con-
cepts in fixed-point calculus. After a short introduction and overview, we use so-
called “loopy games” (games that are not guaranteed to terminate) to illustrate
least and greatest fixed points; we also relate properties of winning and losing to
calculational rules, like the so-called “rolling rule” of the fixed-point calculus.
Conor McBride, University of Nottingham
Dependently Typed Programming: An Epigram Induction
Types characterize the data and programs which in some way ‘make sense’. De-
pendent types – types expressed in terms of data – can capture notions of ‘sense’
which are relative to that data. There are many such notions which inhabit our
heads but not so typically our programs. Dependently typed programming seeks
to reduce this gap between ideas and their execution. For example, we can take
i� j to be the type of matrices with i rows and j columns, then give multiplication
the type �i, j, k. i � j� j � k � i � k.

Epigram is a dependently typed functional language, equipped with an interac-
tive programming environment. Epigram programs elaborate to constructions in
Type Theory by a process strongly resembling inductive theorem proving. This is
no idle coincidence. Epigram uses induction princples – expressed by types and
interpreted by programs – to characterize derivable notions of pattern matching
and recursion in a flexible and extensible way. The language and system continue



252 252

252 252

BEATCS no 86 REPORTS FROM CONFERENCES

244

to be developed at Durham, St Andrews, Royal Holloway and in Nottingham. I
shall illustrate Epigram by example, working ‘live’ at the machine, journeying
from induction principles to functional programs and back again.

Contributed Talks
Thorsten Altenkirch, University of Nottingham
Is Constructive Logic Relevant for Computer Science?
Modern Mathematics is based on classical logic and Zermelo-Fraenkel set theory.
In this talk I discuss why a constructive approach, such as Martin-Löf’s Type
Theory, may be more appropriate for Computer Science.
Tony H Bao, University of Wales Swansea
Foundations of a Generic C++ Library for Generalised Satisfiability Problems
The Satisfiability Problem (SAT) is an actively researched area in computational
theory. While many SAT Solvers were contributed over the years, most of them
are written or rewritten from scratch due to the immense implementation details
required for increasing e�ciency and very often generality was sacrificed for the
need for speed. However, with the help of Generative Programming, generality
and e�ciency can coexist and play nicely together. In this talk I give an overview
of work on a C++ library aimed at providing a generic algorithmic framework for
solving generalised SAT problems with a focus on both generality and e�ciency.
Russell Boyatt, University of Warwick
Modelling and Specification in the Development
and Analysis of Communications Protocols
Communications protocols consist of a set of rules to govern the communica-
tion between agents. Many such protocols were first developed without a rigor-
ous specification, and formal analysis has typically been first ventured only after
problems have emerged in practice. A key problem in applying modelling and
specification techniques in this context is identifying suitable abstract properties
that can be usefully studied in isolation from the actual physical components of
the implementation. We explore this issue and its implications by comparing and
contrasting the role that formal specification has so far played in the practical
development and analysis of authentication and network protocols.
Paul Bell, University Liverpool
Undecidability of the Membership Problem
for a Diagonal Matrix in a Matrix Semigroup
We prove the undecidability of diagonal matrix reachability in a matrix semi-
group. Since our proof shows that the above problem is undecidable in dimen-
sion 5, it sets a new bound on the problem (currently open in all dimensions). We
show a number of encodings to reduce the Post correspondence problem to the



253 253

253 253

The Bulletin of the EATCS

245

reachability of a diagonal matrix in a 5 � 5 matrix semigroup.
William Blum, University of Oxford
Termination Analysis of Lambda-calculus and a Subset of Core ML
Lee, Jones and Ben-Amram introduced “size-change termination,” a decidable
property strictly stronger than termination, and proposed the “size-change prin-
ciple” to analyze it. I propose an extension of this principle to a subset of ML
featuring ground type values, higher-order type values and recursively defined
functions; this is the first time that this pronciple is applied to a higher-order func-
tional language. The language handles natively if-then-else and let rec structures.
The resulting algorithm produces the expected result for higher-order values but
can also analyze the size of ground type values. This enhances the scope of the
termination analyzer to some recursively defined function operating on numbers.
Mark Callanan, University of Kent
Type-safe Clipboard Operations for Document-Centred Functional Programs
Most functional programming systems consist of a separate editor and compiler/
run-time environment, and static type checking is performed after editing. How-
ever, with a document-centred system, there is no separation between the edi-
tor and the run-time environment. In this talk we consider combining functional
programming with a document-centred interface. The main focus is on the ad-
vantages which type-checking brings to the user, and the best ways to provide
clipboard operations and other direct manipulation facilities in a type aware envi-
ronment.
James Chapman, University of Nottingham
Checking Dependently Typed Programs
The goal of this work is to present an independent type checker for Epigram pro-
grams. Epigram elaborates programs written in its high-level syntax into the low-
level formal language of type theory. Constructions for even modest programs are
large and complex; we cannot hope to just look at them to convince ourselves that
they are correct. An idea put forward by Pollack is to write a small type checker
that we can understand directly to provide ourselves with the necessary conviction
that our programs are correct. I report on progress made to this end.
Olaf Chitil, University of Kent
A Theory of Tracing Pure Functional Programs
There exist several tracing systems for Haskell demonstrating the practical via-
bility of di�erent tracing methods. However, combining di�erent methods and
generalising them further proves hard to do and many anomalies and defects in
existing systems have come to light. To overcome these problems we need simple
models of the tracing systems and a theoretical foundation for tracing. In this talk
I describe several tracing methods, and a number of problems and shortcomings



254 254

254 254

BEATCS no 86 REPORTS FROM CONFERENCES

246

that have come to light. Finally I outline the semantical theory that we intend to
establish to describe both strict and non-strict languages and prove the correctness
of various fault location algorithms.
Jolie de Miranda, University of Oxford
The MSO Theory of Level-2 Term Trees is Decidable
Software verification, unlike hardware verification, often gives rise to infinite state
systems, so standard techniques successfully employed on hardware rarely carry
over to software. This talk unearths various classes of infinite structures with
decidable model-checking properties. In particular, we investigate higher-order
grammars as generators of infinite trees; such grammars generate infinite term
trees and these term trees can be thought of as an accurate model of the syntax
trees of higher-order recursive programs. Knapik et al. (2001) showed that, subject
to a particular syntactic restriction on the grammars known as “safety,” these trees
were ripe for model checking, i.e., they possessed a decidable MSO theory. We
show that (at least up to level 2) this safety restriction can be removed.
Aleksandar Dimovski, University of Warwick
Game Semantics and CSP Based Approach for Software Model Checking
We present an approach to software model checking based on game semantics
and CSP. Open program fragments are compositionally modelled as CSP pro-
cesses which represent their game semantics. This translation is performed by a
prototype compiler. Observational equivalence and verification of properties are
checked by trace refinement using the FDR tool. The e�ectiveness of our ap-
proach is evaluated on several examples.
Attila Egri-Nagy, University of Hertfordshire
Algebraic Decompositions of Finite Automata and Formal Models of Understanding
Wreath product decomposition of finite state automata has many potential applica-
tions: it could yield automated object-oriented programming in software develop-
ment; hierarchical decompositions may serve as formal methods for understand-
ing in artificial intelligence; the least number of levels needed for decomposition
provides a widely applicable integer-valued complexity measure; and it relates
to conservation laws and symmetries in physics. The algebraic theory of such
decompositions was first developed in the ’60s, but there has never been a com-
putational implementation until recent work carried out under the supervision of
Prof Nehaniv. This talk briefly delineates algebraic decomposition theory and re-
views the variations of the algorithms presented in di�erent proofs, then discusses
results from the first computational implementation.
Osama Elhassan, University of Leicester
Architectural Support for Collaboration Technology for Socio-Technical Systems
The main objective of this proposal is to build a coordination-based solution for



255 255

255 255

The Bulletin of the EATCS

247

supporting modelling of dynamic human-centric collaborative systems. We focus
on how modelling predictable human interactions, in terms of norms and norm
violation, and externalizing their emerging properties can contribute to managing
human components in a flexible way that can respond easily to evolving social
and organizational settings as well as new requirements. These properties shall be
conceived by studying how to correlate institutional power for modelling norms,
category theory for specifying components and their architectural connectors, and
temporal logic for injecting time and state notions.
Thomas Erlebach, University of Leicester
Network Discovery and Landmarks in Graphs
Consider the problem of discovering the edges and non-edges of an unknown
graph. Initially, only the vertex set of the graph is known. A query at a vertex
reveals all edges that lie on shortest paths between that vertex and the rest of
the graph. The goal is to minimize the number of queries made until all edges
and non-edges have been discovered. We discuss upper and lower bounds on the
competitive ratio achievable by on-line algorithms for this problem. We also give
results for the o�-line version of the problem, which is equivalent to the problem
of placing landmarks in graphs.
Neil Ghani, University of Leicester
Coherence via Confluence
Coherence problems are widespread within category theory and, although indi-
vidual problems have been addressed in detail, there seems to be no systematic
way of tackling them. We show how coherence can be studied uniformly by us-
ing a 2-dimensional version of Knuth Bendix completion which constructs not
only a complete rewrite system, but also an equational theory extending Levy’s
permutation equivalence. We exemplify our theory with a number of examples.
Andy Gimblett, University of Wales Swansea
Parsing and Static Analysis of CSP-CASL
We formalise the syntax and static semantics of the specification language CSP-
CASL in the style of Natural Semantics. We then show how to build a parser and
a static analyser according to these definitions within the framework of Hets, the
Heterogeneous Tool Set for CASL. On the technical side this uses the combinator
parser library Parsec in the functional programming language Haskell. All this
takes place within the wider context of developing tool support (theorem prover,
model checker, tools for computing di�erent representations) for CSP-CASL.
Jonathan Grattage, University of Nottingham
A Compiler for a Functional Quantum Programming Language
We introduce a compiler for the functional quantum programming language QML
developed in Haskell. The compiler takes QML expressions as input and outputs a



256 256

256 256

BEATCS no 86 REPORTS FROM CONFERENCES

248

representation of quantum circuits (via the category FQC of finite quantum com-
putations) which can be simulated by the simulator presented here, or by using
a standard simulator for quantum gates. We briefly discuss the structure of the
compiler and how the semantic rules are compiled.
Gregory Gutin, Royal Holloway, University of London
Level of Repair Analysis and Minimum Cost Homomorphisms of Graphs
Level of Repair Analysis (LORA) is a prescribed procedure for defence logistics
support planning. For a complex engineering system containing perhaps thou-
sands of assemblies, sub-assemblies, components, etc. organized into several lev-
els of indenture and with a number of possible repair decisions, LORA seeks
to determine an optimal provision of repair and maintenance facilities to mini-
mize overall life-cycle costs. For a LORA problem with two levels of indenture
with three possible repair decisions, which is of interest in UK and US military
and which we call LORA-BR, Barros (1998) and Barros and Riley (2001) devel-
oped certain branch-and-bound heuristics. The surprising result of this talk is that
LORA-BR is, in fact, polynomial-time solvable. To obtain this result, we for-
mulate the general LORA problem as an optimization homomorphism problem
on bipartite graphs, and reduce a generalization of LORA-BR, LORA-M, to the
maximum weight independent set problem on a bipartite graph.
Will Harwood, University of Wales Swansea
Weak Bisimulation Approximants
Bisimilarity is the canonical behavioural equivalence for process algebras, and
weak bisimilarity generalises this by admitting silent actions. Weak bisimulation
approximants approach weak bisimilarity by considering games whose length is
bounded by an ordinal number; for example, the nth approximant relates exactly
those processes whose behaviour cannot be distinguished in a game lasting n
turns. On BPP, a simple process algebra, it has long been conjectured that one
never need play a game lasting more than �� 2 steps; however, currently the only
proven bound is the Church-Kleene ordinal (the least non-recursive ordinal num-
ber). I show how the bound can be brought down to ��, and suggest an approach
for resolving the � � 2 conjecture.
Hongmei He, University of Loughborough
Experiments and Optimal Results for Outerplanar Drawings of Graphs
We review our experiments with heuristics and genetic algorithms for low crossing
outerplanar drawings and on classes of graphs with optimal outerplanar drawings.
Michael Ho�mann, University of Leicester
Computational Classes of Monoids
In this talk we concentrate on the following four computational classes of monoid:
rational, automatic, asynchronously automatic and hyperbolic. We study algebraic



257 257

257 257

The Bulletin of the EATCS

249

and computational properties of the relations between these classes of monoids.
We present the complete inclusion structure of these classes of monoids; in doing
so we answer open questions concerning the relationship between automatic and
hyperbolic monoids: hyperbolic monoids are not necessarily automatic.
Catherine Hope, University of Nottingham
Accurate Step Counting
Starting with an evaluator for a language, an abstract machine can be mechan-
ically derived using successive program transformations. This has relevance to
studying both the space and time properties of programs because these can be es-
timated by counting transitions of the abstract machine and measuring the size of
the additional data structures needed, such as environments and stacks. In this talk
I use this process to derive a function that accurately counts the number of steps
required to evaluate expressions in a simple language.
Matthew Johnson, University of Durham
The Source Location Problem in Digraphs
We are concerned with the problem of selecting the location for facilities, subject
to some constraints, in a given network. The nodes selected are called sources,
and users at other nodes access the facilities at the sources through the network.
Thus a measure of the robustness of the network is the number of disjoint paths
between each user and the sources. More formally, a set of (k, l)-sources for a
digraph D = (V, A) is a subset S � V such that for any v � V there are k arc-
disjoint paths that each join a vertex of S to v and l arc-disjoint paths that each
join v to S . The Source Location Problem is to find a minimum size set of (k, l)-
sources. We provide a polynomial algorithm to solve this problem and discuss
progress on other variants of the Source Location Problem.
Mark Jago, University of Nottingham
Belief Revision for Resource Bounded Agents
Rationally updating and revising beliefs is traditionally thought to be possible
only for computationally ideal agents that can compute all consequences of their
beliefs, regardless of time and space limitations. Focusing on rule-based agents,
we show how resource bounded agents can revise and update their beliefs in time
linear in the size of the agent’s state and program. We argue that such operations
are rational, as they satisfy all but one of the AGM postulates for revision. We
also discuss the relationship between belief revision and update.
Oliver Kullmann, University of Wales Swansea
Combinatorial Tools for Propositional Satisfiability Decision
Boolean formulas in CNF (conjunctive normal form) are the dominating input
format for SAT (satisfiability) solvers. I discuss a natural (and well-known) gen-
eralisation of CNF’s as “combinatorial data structures,” which leads to a very



258 258

258 258

BEATCS no 86 REPORTS FROM CONFERENCES

250

natural approach to (hyper)graph colouring problems; a theoretical application,
generalising a theorem of Seymour, is outlined.
Alexander Kurz, University of Leicester
Logics for Transition Systems from Representations of Functors
Coalgebras X � TX for a functor T on a category C are a well-established model
for transition systems. We discuss how specification languages for these transition
systems are obtained from the dual functor L of T on the Stone dual of the category
C. The dual L itself yields only ‘abstract propositions’ (meaning equivalence
classes of formulas up to interderivability), neither a practical definition of the
formulas nor a calculus defining derivability. We introduce the notion of a functor
L being presentable by operations and equations and show that each presentation
of L gives rise to a sound, complete, and expressive modal logic for T -coalgebras
(modal operators are induced by the operations, modal axioms by the equations).
David Manlove, University of Glasgow
Pareto Optimality in House Allocation Problems
An instance of the House Allocation problem (HA) involves a set A of agents, and
a set H of houses. Each agent has an acceptable set of houses and ranks this set in
strict order of preference. A matching M of agents to acceptable houses is Pareto
optimal if there is no other matching M� such that (i) some agent is better o� in M�
than in M, and (ii) no agent is worse o� in M� than in M. I present an e�cient al-
gorithm for the problem of finding a maximum Pareto optimal matching, together
with related results concerning Pareto optimal matchings. The problem model de-
scribed here has applications in various contexts, such as the allocation of students
to projects, and for the Scottish Executive’s Teacher Induction Scheme.
Matus Mihalak, University of Leicester
Joint Base Station Scheduling
We consider the problem where n mobile users want to get data from m base sta-
tions. Every base station can send data to any user and this creates an interference
around the base station in the form of a disk with radius equal to the distance of
the user to the base station. We assume that sending data to a user takes one time
unit (one round) and a user can receive data only when it is not in interference
produced by another base station. The goal is to assign users to base stations
and find the round in which the user is served by the assigned base station while
minimizing the number of rounds. We study both one dimensional and two di-
mensional cases. We present a 2-approximation algorithm for the 1D-case and
leave the complexity unsolved. For the 2D case we show the problem is NP-hard
and show some lower bounds on some natural greedy algorithms.
Neil Mitchell, University of York
Total Pasta: Static Analysis For Unfailing Pointer Programs



259 259

259 259

The Bulletin of the EATCS

251

Most errors in computer programs are only found once they are run, which results
in critical errors being missed due to inadequate testing. If static analysis is per-
formed, then the possibility exists for detecting such errors, and correcting them.
This helps to improve the quality of the resulting code, increasing reliability. A
static analysis has been developed and implemented for the experimental pointer
based language Pasta, which is designed to represent pointer manipulating code,
such as data structures. The analysis checks for totality, proving that a particular
procedure cannot crash and will always terminate. Where a procedure does not
satisfy this, the preconditions for the procedure are generated.

Alberto Moraglio, University of Essex
Geometric Interpretation of Crossover
Boiling down the non-algorithmic di�erences, the various evolutionary algorithms
di�er only in the solution representation and the relative genetic operators (mu-
tation and crossover) customized for the specific representation. A way to treat
di�erent representations uniformly is therefore prerequisite for unification. The
focal questions of my research are: i) what is mutation; ii) what is crossover; and
iii) what is common to all mutation operators and all crossover operators beyond
the specific representation? In this talk I give my answers to these questions and
discuss a number of surprising implications.

Peter Morris, University of Nottingham
Generic Programming in a Dependently Typed Language
It is possible using dependent types to write equality functions that give results in
a more informative type than just the booleans: we can construct as a result either
a proof that the two are in fact the same thing or a proof that they are not. Another
dependently typed trick is to use reflection to define the type of regular types (with
constructors µ, +, �, 1, 0, etc) and then the type of elements for a given regular
type (in for µ, inl/inr for +, pairing for �, etc). By combining reflection and a
more informative equality testing we can write a data-type generic equality test
that is obviously correct from its type.

Peter Mosses, University of Wales Swansea
Tool support for Modular SOS
Modular SOS (MSOS) is a variant of conventional SOS. Using MSOS, the tran-
sition rules for each construct of a programming language can be given incre-
mentally, and do not need reformulation when further constructs are added to
the described language. MSOS thus provides an exceptionally high degree of
modularity in semantic descriptions, removing a shortcoming of the original SOS
framework. The crucial feature of MSOS is that labels on transitions are now
morphisms of a category, and exploited to ensure the appropriate flow of informa-
tion (such as environments and stores) during computations. The talk first recalls



260 260

260 260

BEATCS no 86 REPORTS FROM CONFERENCES

252

the foundations of MSOS, and illustrates how MSOS descriptions are written in
practice. It then introduces a Prolog-based system that can be used for validating
MSOS descriptions. An earlier version of the system has been used to support
undergraduate courses on semantics at Aarhus and Monash.
Wasana Ngaogate, University of Warwick
Extensible Knowledge Space
This research proposes a model of extensible knowledge and its dynamic change
using classical computer science. The model has been systematically developed
into working educational software for module organisation.
Bruno Oliveira, University of Oxford
Exploring Lightweight Implementations of Generics
In “A lightweight implementation of generics and dynamics,” Hinze presents a
simple approach to generic programming that does not require major extensions
to the Haskell 98 type system. Type representations are used to “typecase” over
the structure of types. While the approach is quite powerful, supporting generic
functions over nearly all Haskell datatypes, it has still some limitations. One
of these is the impossibility to override the behaviour of a polytypic definition
for some specific instances. I show how to address this problem using ad-hoc
polymorphism. This can be readily implemented in Haskell using a two-parameter
type class, however this has some drawbacks. Those drawbacks could be removed
with a small language extension.
Cristovao Oliveira, University of Leicester
A Framework Based on Coordination and Software Architecture for Mobile Systems
The goal of this work is to develop a methodological approach and support tools
for the modelling of distributed and mobile systems along three architectural
views: Computation, Coordination and Distribution. This approach has a sound
semantic basis over the CommUnity architectural approach developed by Fiadeiro,
Lopes and Wermelinger. The views to be developed will also provide support for
the distributed execution of the modelled system. Finally, the CommUnity Work-
bench developed by the candidate in his MSc thesis will be extended to the overall
framework, thus providing a tool for modelling mobile systems according to the
developed architectural views, following the developed methodology, and animat-
ing them using the developed technologies.
Graham Oliver, University of Leicester
Automatic Presentations and Classes of Semigroups
Structures presentable by finite automata are of growing interest, particularly as
the closure properties of automata give a generic algorithm for deciding first order
properties. The work presented here is a contribution to the foundational problem:
given a class of structures X, classify the members of X which have an automatic



261 261

261 261

The Bulletin of the EATCS

253

presentation. We consider various interesting subclasses of the class of finitely
generated semigroups. In particular, a classification for the class of finitely gener-
ated groups allows a direct comparison with the theory of automatic groups.

Detlef Plump, University of York
Computational Completeness of Rule-Based Languages
We study the computational completeness of rule-based programming languages
on arbitrary domains. We only assume a universe of rules and a domain of ob-
jects such that rules induce binary relations on the domain. Programs are built
from three constructs: nondeterministic application of a finite set of rules, either
(a) in one step or (b) as long as possible, and (c) sequential composition of pro-
grams. We present a completeness condition guaranteeing that every computable
binary relation (and hence every computable partial function) on the domain is
computed by some program. Instantiating the abstract framework with string,
term or graph rewriting yields computationally complete languages. In each of
these cases, omitting either the construct “as long as possible” or the sequential
composition results in an incomplete language. For string and graph rewriting,
the one-step application of rules cannot be omitted either and hence the string and
graph rewriting languages are minimal.

Markus Roggenbach, University of Wales Swansea
CSP-Prover
We describe CSP-Prover, a theorem prover dedicated to refinement proofs within
the process algebra CSP. It aims specifically at proofs on infinite state systems,
which may also involve infinite non-determinism. Semantically, CSP-Prover of-
fers both classical approaches to denotational semantics: either based on complete
metric spaces or on complete partial orders. Technically, CSP-Prover is based on
the generic theorem prover Isabelle, using the logic HOL-Complex. Within this
logic, the syntax as well as the semantics of CSP is encoded, i.e., CSP-Prover
provides a deep encoding of CSP. Our applications include refinement proofs (1)
in the context of an industrial case study on formalising an electronic payment
system and (2) for the classical example of the dining mathematicians.

Ana Salagean, University of Loughborough
On the Computation of the Linear Complexity and the k-error
Complexity of Binary Sequences With Period a Power of Two
The linear complexity of a sequence is a fundamental parameter for virtually all
applications of linearly recurrent sequences, including cryptography. In this talk
we show that one can use the Games-Chan, Stamp-Martin and Lauder-Paterson
algorithms to compute the analogue notions of linear complexity and k-error linear
complexity for finite sequences. Using ideas from the Stamp-Martin and Lauder-
Paterson algorithms we develop a new algorithm which computes the minimum



262 262

262 262

BEATCS no 86 REPORTS FROM CONFERENCES

254

number of errors needed to bring the linear complexity of a sequence below a
given value. This algorithm has linear (bit) time and space complexity and can
be used for encoding and decoding certain binary repeated-root codes. We thus
improve on a previous O(N logN) decoding algorithm of Lauder and Paterson.
Lucy Saunders-Evans, University of Cambridge
Event Structure Semantics for Higher Order Process Calculi
There are many di�erent process calculi for modelling concurrent processes. It
is desirable to give a denotational semantics for them that will allow them to be
related. Event structure spans appear to provide a very natural semantics for a
variety of higher order processes, including A�ne HOPLA [Winskel, Nygaard].
However, they are currently limited by the fact that many forms of parallel com-
position of processes are given an interleaving semantics. I explore some ideas
for overcoming this problem and present a small process language together with
its semantics with partially synchronous parallel composition as a construct.
Jan Schwinghammer, University of Sussex
A Typed Semantics for Languages with Higher-Order Store and Subtyping
In languages like ML references to functions may be created. The heap store of
such languages is referred to as higher-order. While it is fairly straightforward to
obtain untyped domain models for languages involving higher-order store, mod-
elling types is harder. Levy presented an elegant typed model of higher-order store
based on a possible worlds semantics; I briefly outline its construction before ex-
tending the type system with a simple notion of subtyping. A consequence is that
derivations of typing judgements are no longer unique. Adapting a proof method
due to Reynolds, I prove coherence using a Kripke logical relation and retractions
between the typed and untyped models. The resulting semantics is su�ciently
expressive to interpret Abadi and Cardelli’s (imperative) object calculus.
Sandra Steinert, University of York
Graph Programs for Graph Algorithms
Graph programs as introduced by Habel and Plump provide a simple and yet com-
putationally complete language for computing functions and relations on graphs.
We extend this language so that numerical computations on labels can be conve-
niently expressed. The resulting language GP has a simple syntax and semantics
and therefore facilitates reasoning on programs. We present the language and its
semantics, and demonstrate its use by giving programs for Dijkstra’s shortest path
algorithm and showing how to prove correctness and complexity properties.
Chang Su, University of Liverpool
Routing via Single-Source and Multiple-Source Queries in Static Sensor Networks
Sensor networks are a newly emerged and promising field in wireless computing.
They consist of a large number of short-range sensor nodes with limited memory,



263 263

263 263

The Bulletin of the EATCS

255

power and computational capacity. These features make communication in sensor
networks di�erent from traditional networks. We consider the routing problem
in static sensor networks, and show how to finish routing, in both the single- and
the multiple-source cases, using limited memory and energy. After preprocessing,
we can finish routing in optimal transmissions for the single-source case; for the
multiple-source case, it is also an asymptotically optimal algorithm.
Ondrej Sykora, University of Loughborough
The Gap between Crossing Numbers and Outerplanar Crossing Numbers
An outerplanar drawing of an n-vertex graph G = (V, E) is a drawing in which
the vertices are placed on the corners of a convex n-gon in the plane and each
edge is drawn using one straight line segment. We derive a general lower bound
on the number of crossings in any outerplanar drawing of G, using isoperimetric
properties of G. The lower bound implies that outerplanar drawings of many
planar graphs have at least O(n log n) crossings. Moreover, for any drawing of G
with c crossings in the plane, we construct an outerplanar drawing with at most
O((c +

�
v�V d2v ) log n) crossings, where dv is the degree of v. This upper bound is

asymptotically tight. For planar graphs, a outerplanar drawing with the required
properties can be constructed in O(n log n) time.
Rick Thomas, University of Leicester
Groups With A Co-Context Free Word Problem
In this talk we survey some interesting connections between formal language the-
ory on the one hand and group theory on the other. Given a group G generated by
a finite set X, the “word problem” of G consists of all words over X that represent
the identity element of G. One natural question to ask is about the connections
between the complexity of the word problem (as a formal language) and the alge-
braic structure ofG. In this talk we survey some recent results on the set of groups
whose word problem is the complement of a context-free language.
Joel Wright, University of Nottingham
Finally, a Simple Semantics
In this talk we develop a simple functional language in which to explore the se-
mantics of synchronous exceptions and asynchronous interrupts. In particular,
we seek to define a ‘finally’ operator in terms of primitives of the language, and
prove that this operator has the desired behaviour. This is part of a larger program
of work concerned with the semantics of the exception and interrupt handling
primitives provided in Concurrent Haskell, and on reasoning about operators and
programs written using these primitives.
Xiaohui Zhang, University of Liverpool
New Solution for Multiple Mobile Agent Rendezvous in a Ring
We study the rendezvous search problem for k � 2 mobile agents in an n node



264 264

264 264

BEATCS no 86 REPORTS FROM CONFERENCES

256

ring. Each agent has only log k memory, and the one token. Our idea is that we
let all the agents start traversing with di�erent speeds, and also that speeds are
not fixed. Under some condition, the agent may change its speed. So we can
guarantee all of the agents can finally meet together in the non-periodic case.
Paolo Zuliani, Princeton University, USA
Nondeterministic Quantum Programming
In standard computation, nondeterminism provides a way for specifying and rea-
soning about programs. In quantum computation, nondeterminism is either meant
to be “classical” probabilism or it is not considered at all. However, most known
examples of quantum computation (e.g. Shor’s factoring algorithm and Deutsch-
Jozsa’s algorithm) have natural nondeterministic specifications. We argue that
nondeterminism arises in other examples of quantum computation. In particular,
we consider nondeterminism embedded in a programming language for quantum
computation, qGCL, and use that to model and reason about quantum nonlocality
and quantum mixed-state systems.


