.-.21.15._

REPORTS ON CONFERENCES

Report of the 10th British Colloquium for -
Theoretical Computer Science |

University of Bristol, 28-30th March 1994
(Sponsors: SERC. Hewlett-Packard. Praxis, Sun microsystems)

The tenth meeting of the British Colloquiwm on Theoretical Computer Scicuce was held in the
of University of Bristol at the now traditional time close to the Easter festivities. The Uiniversity
and the historic city of Bristol provided excellent location for this celebratory conference which
was admirably organised by Brian Stonebridge and his energetic local team. The colloguiwm was
splendidly supported by neatly forty technical presentations (abstracts of contributed talks may
be found below) including the stimulating contributions of five distinguished guests (Paul Spirakis.
Robert Cori, David Bree, Richard Bird and Mark Jervrum),

BC'TCS is now established as the foremost conference on theoretical computer science in the
British conference calendar. Apart from providing a forum for the presentation and discussion of °
the current work of established researchers, the meeting has the primary aim of encouraging young
researchers, To this end presentations are not subject to a referecing process and young scientists
benefit from the sympathetic and relaxed discussion of a wider and international community, This
year saw the introduction of tutorial talks (Paul Dunne, Complexity theory of Boolean funclions
and Mike Holcombe, X-machines - what are they?) which will be a continuing feature of the
colloquium. In addition. there are plans to provide financial assistance for the attendance of
research students at future meetings, For the first time, this year's registration fee included one
vear's subscription to membership of the European Association for Theotetical Computer Science,

BC'TCS11 will be held at the University College of Swansea, University of Wales over the inclu-
sive dates 2-5th April 1995, The local organiser, Chris Tofts (e-address: ¢.m.n.ToftsTswansea.ac.uk
or emnt@cs.man.ac.uk) welcomes all enquiries from potential participants.

Alan Gibbons -

BCTCS Local Organisers 1993: Brian Stonebridge (Chainman), Alan Chalmers, Neil Davies.
BCOTCS National Committee: Alan Gibbons (Chairman, Warwick), Paul Dunne (Secretary,
Liverpool), lain Stewart (Treasurer, Swansea). Brian Stonebridge (Bristol). Julian Bradfield (Ed-
inburgh), Zedan Hussein (York). Rick Thomas (Leicester), John Tucker (Swansea), Mike Holcombe
{Shefhield).

Invited Talks

Paradigms for fast parallel approximations to problems that are hard to parallelise
' Paul Spirakis, Patras, Greece

Building automata with time stamps
Roberf C'ori, Bordeaux and Paris, France

The semantics of natural language temporal prepositions and conjunctions
Darvid Bree, Manchester, UK

Relational program derivation
fichard Bird, PRG Oxford

The computational complexity of counting
Mark Jerrum. Edinburgh, UK

=24 /=

Contributed Talks

On the Analysis of Genetic Algorithms
Martyn Amos, Somasundaram Ravindran and Alan Gibbons, University of Warwick
A Genetic Algorithm is an optimisation algorithm based on the theory of natural selection. Genetic
Algorithms seem to Be inhevently highly patrallelisable. Although empirical results apparently
confirm this potential for fast parallel computation, there is little theory that allows a proper
complexity analysis. We propose an analytical way forward through the application of Markov
Chain theory.

Petri nets and modal logics
Julian Bradfield, University of Edinburgh

Suppose we are proving properties of infinite state systems. using some logic, such as the modat mu-
caleulus, We will wish to write down sets of states, aud it would be nice to know the descriptive
complexity of the sets we might need to write down. I show that although Petri nets are not
Turing powerful, to prove arbitrary mu-calculus properties we still need to be able to write down
undecidable sets of markings: indeed, we even have to write down non-arithmetic sets. (Reference:
J. €. Bradfeld, Verifying Temporal Properties of Systems. Birkhauser. Boston, Massachussets
{1991)). '

Rewriting a Semigroup Presentation .
C. AL Campbell, E.F.Robertson, N, Ruskue and R.M. Thomas®, University of Leicester

Let S be a finitely presented semigroup having a minimal left ideal L and a minimal right ideal
R. Ve show how to obtain a presentation for the group RN L. It is obtained by rewriting the
velations of S, using the actions of § on its minimal left and minimal right ideals. This allows the
structure of the minimal two-sided idea! of § to be described explicitly in terms of a Rees matrix
semigroup. These results are applied to the Fibonacei semigroups. proving the conjecture that
S(ryn, k) is infinite if g.e.di(n, k) > 1 and gedi(nyr+ k- 1) > L

Modeling Process with Bounded Locations
Fabio Cusablancn, Nagoya University
One of the aspects neglécted by a interleaving approach to concurrency is the spatial distribution
of the computation.
Approaches which have dealt so far with this problem assume the availability of an infinite

nutber of sites where to perform actions or suppose that the spatial structure of a process is-

known before its execution.]

¥We present a model where, coherently with the reality of concurrency. processes are extended
with managets of finite sets of spatial resources (locations). The managers assign locations to
agents, if any is available, and collect locations which are eventually released. Release of locations
is modelled explicitly by a special release action,

Also. we suggest that managers can ask for and receive locations from other managers. For this
purpose it is necessary to define a contiguity relation between managers and a location transfer
policy. Alternative approaches to the modeling of these aspects are presented,

Finally the expressiveness of the model is discussed.

Automated Structural Test Data Generation
Michae! Cousins . University of Portsmouth

The test generation problem is defined as "generate an input vector which forces execution flow
down a predefined path through a program™. We show how this problem can be transforimed into
an unconstrained optimisation. For real objective functions the optimisation can be performed
using the simplex method of Nelder & Mead, the talk describes a method for extending the
simplex algorithm to work with integer variables. Our own trials using the method suggest it is a
promising approach - we have been able to successfully generate a test case for every feasible path
we have tried giving a 100%. cyclomatic coverage over all our trial programs. We conclude with
an artificially generated example which highlights the limitations of our approach.

b

A TFailures Model Applied to Divergence in Processes
S Counsell, Bivkbeck Coltege, Loudon

Iu earlier work. we described a divergence model in terms of the ability of a process to deviate
from an ideal path: we defined a non-cdivergent stale as one matching » state on an ideal path, a
partially-divergent state as a deviation {eom a state on the ideal path, and a fully-divergent state
az a state within a never-ending loop. In this paper, we extend that model by attributing an
action type to each action occurring between two states, whilst vetaining the three divergent state
types introduced in the previous model. This finer level of granularity allows us to characterise
the behaviour of finite deterministic processes in terms of those action/state pairs in their traces
and actions/state pairs refused which together form the fuilures of a process. By comparing the
refusals of an arbitrrary process with those of a single ideal path within the ideal process, we ave
able to quantify the extent to which a process diverges from that ideal path, and hence order
processes accordingly. The ordering is a partial-ordering, with maximal element the ideql, and a
minimal element similar to the definition of chavs.

Upper bounds for the expected length of a longest cominon subsequence
Viado Danéik, University of Warwick

Let fin) be the expected length of a longest commoun subsequence of two random sequences over a
fixed alphabet of size k. It is known that f(n) — ern for some constant ¢, We define a collation
as a pair of sequences with marked matches. A dominated collation is a coliation th at is not
matched optimally. Upper bounds for ¢ can be derived from upper bounds for the number of
nondominated collations. Using local properties of matches we can eliminate many nondominated
collations and improve upper bounds for ¢j.

An Institution for Modular Specifications
E. David & C. Roques, Universited Evey & Universited Orsay
In this work we propose and discuss a comprehensive foundation to the notion of modular speci-
fications.

Algebrale specifications provide a formal framework allowing to deal with vinodularity: the
main goal of this work is to investigate modularity issues for algebraic specifications. Ve define a
very general framework for modularity in the following way: first. we provide a generalisation of
the {institution independant) stratified loose semanties. Then, we coustruet an institution from
these modular specifications, and we show that some aspects of the institution frameweork do not
suit very well with modularity issues,

A Graph-Based Approach To Resolution In Temporal Logic
Clare Diron, University of Manchester
Proof procedures for classical logic such as tableaux and resolution have been used as a basis for the
developmient of decision procedures for temporal logies, The application of the ciassical resolution
rule fails in temporal logics as two complententary literals will not represent a complementary
formulaif they cecur in different time contexts, Due to such problems with resolution the majority
of decision procedures for temporal logics have been tableaux hased.

In this talk, we present algorithims developed in order to implement a clausal resolution method
for discrete. linear temporal logics. given in [Fis90], As part of this method. temporal formulae are
rewritten into a normal form and both “non-temporal” and *temporal” inference rules are applied.
Non-temporal resolution is like classical resolution but is ouly applied to formutae which represent
constraints applying to the same moment in time. The temporal resolution rule attempts to match
conclitions that must be eventually satisfied with sets of formulae that together imply that the
condition will never he satisfied.

Through the use of a graph-based representation for the normal form. “efficient™ search al-
gorithms can be applied to detect sets of formulae for which temporal resolution is applicable.
Further, rather than coustructing the full graph structure, our atgorithms only explore and con-
struct as little of the graph as possible. These algorithims have been implemented and have been
combined with sub-programs performing transtation ro normal form and non-temporal resolution

”~

b

to produce an integrated resolution based temporal theorem-prover.

(Relerence: {Fishl] M. Fisher. A Resolution Method for Temporal Logic. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence (LJCAL), Sydney. Australia, Au-
gust 1991, Morgan Kaufman.)

Ceilings of Monotone Boolean Functions
Paul E. Dunne, University of Liverpool

In this talk we introduce the concept of a monotone Boolean function. h, being a ceiling of
another monotone Boolean function, g. The relationship *h is a ceiling of g’ is of interest since
for any monotone Boolean function, f. there is a close relationship between the combinational and
monotoue network complexities of the function ({f AND g) OR h}. In this talk we oubline three
groups of results concerning ceilings of monotone Boolean functions:

1. We describe necessary and sufficient conditions for h to be a ceiling of g.

,

y
2. We give a combinatorial estimate of the number of functions within a specific class that have
‘non-trivial’ ceilings.

3. e show how for any monotone Boolean function, g, a sequence of r functions {gi)}
which includes g, may be constructed so that for all i>0 g(i+1) is a ceiling of g(i) and for
all Boolean functions f, if g(i) has polynomial monotone complexity (for all i) and f has
superpolynomial combinasional complexity then for at least one value of 1 the function {f
AND g(i)) OR g(i-+1)} has superpolynomial monotone complexity,

These results establish that the combinational to monotone translation given by Berkowits’ slice-
functions are a special case of a more general property concerning monotone Boolean functions.

Performance Implications of Virtualization Of Massively Parallel Algorithm
Tmplementation ,
¢ A. Farvelly C.S. Hiopoulost 1 D. H. Kieronskaj M. Kordal
t Curtin University, King's College London, Strand, London

In this paper we investigate the accuracy of performance prediction for virtualised implementations
of parallel algorithins on massively parallel SIMD architectures. Virtualisation is the process by
which algorithms which assume n processors are implemented in a system with p processors,
where n > p. Virtualisation is implemented in some form by any parallel environment that allows
algorithms to assume mote processors than ave physically available on the machine.

Our results also show that some algorithms perform closer to their theoretically predicted
performance than others. This work has implications for both algorithm designers and compiler
writers since it provides insights into the effects of virtualisation on the efficiency of parallel
algorithm implementations.

The Compositional Properties of Extensional Answers to Logic Queries
R. J. Gaizauskas, University of Sheffield

’
This covers results of my Ph.D. thesis { Deriving Answers {o Logical Queries. Sussex 1992):

—

. a semantic definition of “extensional answer' for a first order query agaiust a logic database
of Rrst order formulas can be provided which parallels that given for definite clauses in the
logic programmiug tradition:

9. using these notious of answer for queries in both definite clause and first order logic, a number
of compositionality results can be demonstrated which show how a complex query may be
decomposed into components such that the answers to the complex query are a function of
the answers to the components. themselves viewed as queries;

.

a notion of answer detivation. based on the first order compositionality results can be cefined
which is both sound and complete:

=250

4. this notion ol answer derivation provides the formal logical basis for a new approach to au-
tomated deductive question answering, which naturally lends itself to parallel computation.

On the lower bound for parallel string matching
Clive N. Galley, King's College Loundon, University of London

We consider the problcm of parallel string pattern matching over a geneval alphabet on thu RCW
PRAM model of computation. Breslauer-Galil showed a lower bound Q(loglogm) on t.he time
complexity of the above problem. Their bound holds for m > 5.073 . 10?%, We improve this to
m > 218,

ATLAS:A Typed Language for Algebraic Specification
B.M Hearn, University College of Swansea,

We introduce the algebraic specification language ATLAS. This language allows an algebraic
structure to be given to a specification at the level of both types and terms. ATLAS specifications
are executed by type and term rewriting. The initial model semantics of type specifications and
the equivalence of typed equational logic and type and term rewriting has been considered in
Meinke [1991.1992],

Unifiable Algebras g
Nick Holloway and Alan Gibbons, University of Warwick
For an algebra, 4 = {a@p, a1..... a1}, and a binary relation ¢, we define 4 to be a 'nifiable A'igebm
if. for any two expressions, each of which is an arbitrary parenthesisation of vy o vy 0-+-0v,. an
instantiation of all variables v; can be found such that the result of both expressions is the same.

We demonstrate the existence of certain classes of non-trivially unifiable algebras (e.g. which
are noh-associative algebras) which may be unified by sequential polynomial time algorithms or
RNC paralle] algorithms. For an arbitrary algebra, exponential time seems to be required to test
for the unifiability of two expressions.

Applications of the notion of unifiable algebras include the discovery of polynomial time se-
quential algorithms and RNC parallel algorithms for non-trivial sub-classes of problems in math-
ematics and computer science which generally take exponential time. We briefly describe some
applications.

Domains as Vector Spaces
Chris Holt, University of Newcastle

The foundations of mathematics are generally couched in terms of either logic/set theory or cat-
egory theory. However, it seems that malti-sets (bags} arise frequently in computing science: so
perhaps a mathematical foundation for computing might choose to not invoke the axiom of idem-
potence {xx = x}. We can then distinguish the cases of a value occurting one or more times; and
in fact we can introduce “anti-values™, that join with values to vield the identity element {the
empty bag). This corresponds to extending the domain of coefficients of values, first from 0.1 to
the whole numbers, and then to the integers, Going further, coefficients can be extended to the
reals. or the complex numbers, so that the domain forms a vector space. In such a space, ordinary
mappings can be defined to be linear. This seems to lead to a different way of viewing domains;
it is conjectured that it may simplify reasoning about program behaviour,

Functional Logic
Tan Helyer, University of Bristol

It is becoming ever more important to he able to express, test and prove program properties, in
ovder to increase the level of confidence in the correctness of programs. However, programmers
fincd these activities difficult; proofl assistant packages tend to treat proof as a separvate activity
from programming, requiring different skills. Part of the problem is that the language of logic is

less familiar and convenient than a progranuning language.
Functional languages, being the only purely declarative programming languages, provide a
programming paradigm which is particularly clean and simple from a logical point of view, All

~251-

external aspects of program behaviour except time and space requirements can be deduced from
the values ol expressions,

In this talk, a case is macle for using a functional language as its own logic language. State-
ments are boolean expressions within the language, and the usual boolean operators are used to
combine statements. Some extended facilities are needed in the functional language to make it
expressive enough to discuss properties such as program termination and the interactive hehaviour
of programs. The resulting functional logic has some of the properties of classical logic, and some
of the properties of constructive (intuitionistic) logic.

The main advantage of this functional logic is that properties are computable; familiar pro-
gramming techniques can be used in expressing properties. and they are automaticalty testable,
Tu addition, programs do not have to be treated as text ov syntax treest program modules and
property modules ave just linked together.

X-machines with stacks -
F. Ipate, University of Sheffield
We present the X-machine as a general abstract model of computation closely related to that of
an automaton. The type @ of a X-machine is the class of relations (usually partial functions)
that constitute the elementary operations that the machine is capable of performing on the data
structure X. By specifying the type &, many computational models can be derived, including finite
state machines, pushdown automata, Turing machines.

The talk will be concentrated around two particular X-machines, stream X-machine and
straight-move stream X-machine. A stream X-machine is one in which X' = T's 2 M aXs, where M
is the memory of the maching and T and T are the output and input alphabets respectively and
any ée® will perform a sequential machine-like operation on T's xT# {read an input character and
procduce an output character) while updating the value of 3. A straight-move stream X-machine
is a stream X-machine which admits empty moves (reads the null string and produces a null ous-
put). The class of velations and partial’functions computed by these X-machine models will be
investigated. These two models will be restricted to those in which the memory contain a finite
number of stacks and ® will inciude the usual stack specific operations and their computational
power will be explored.

An Incisive Categorisation of Computable Database Queries

Mark Levene and George Loizou, University College London & Birkbeck College, London
We present an alternative approach to that of Chandra and Harel (Computable queries for rela-
tional dala bases. Journal of Computer and System Sciences 21 (1950) 156-178) and Abiteboul and
Vianu (Procedural languages for dalabase queries and updaies, Journal of Computer and System
Sciences 41 (1990) 181-229) in considering computable database queries. which are mappings from
sots of records to sets of records. In particular, we view a computable query as betng realised via a
Turing-computable mapping from strings to strings and an encoding. which encodes the input set
of records into an apptopriate string. An encoding of a set of records consists of two components:
an ordering function, which orders the records in a set as well as the values of each record in the
set. and an isomorphisin, which maps the values in the records of the set to strings. An important
class of encodings called free encoclings, whose isomorphism has the same semautics as the identity
mappiug on record values, is also defined.

Our analysis of computable queries provides clarification of the notion of a computable query
by dealing with the problem of how a database language can be implemented on a standard Turing
machine that does not cater directly for mappings from sets of records to sets of records. We carry
out our analysis by investigating subclasses of computable queries and showing the equivalence
of these subclasses to ones already defined in the database literature, We also investigate an
equivalence relation on computable queries; two computable database queries are related if they
are realised via the same Turing-computable mapping. say . We show the following interesting
result regarding the cardinality ol the equivalence class of a computable query with respect to
the said equivalence relation: either f does not realise any computable guery. or [realises exactly
one computable query. or [realises a countably infinite set of computable gueries, Our final

~252~

result shows that, by adding membership queries to the class of encoding-independent computable
queries, the closute of the resulting extended class under composition of mappings is the set of all
isomorphism-independent computable queries.

A Complexity Theory for Programs
Steve Matthetws, University ol Warwick
Complexity theory serves us well in providing a tool for scientifically comparing the efficiency of
two algovithms. Any debate over the performance of an algorithm can be stated mathematically,
for example. is it n¥*(log n) ? Clonsequently, we can use the language of mathematics to decisively
answer such questions without resorting to personal opinion or prejudice.

Debates upon the comparative performance of programming languages do not appear to be
conducted with anything a.p[S_roa.ching the same level of objectivity, Perhaps this is because there
is no "complexity theory for programs”, that is, no accepted scientific theory in which we can
express the performance of a program,

In this talk we argue that it should be possible to ascribe the notion of “complexity” to a °

program by developing a theory of quantities for both the representations of data objects and the
way they are manipulated.

On the complexity of deciding bisimulation equivalence of normed_context-free
processes
Faron Aloller, Swedish ' Institute for Computer Science :

In a recent volume of the Journal of Theoretical Computer Science, Huynh and Tian demon-
strate that the problem of deciding bisimilarity between normed context-free processes is in
P = NPYP; that is. they present an algorithm which guesses a poiynomial-sized proof of equiv-
alence and \alldate\ this proof in polynomial time using oracles which freely answer questions
which are in NP. In this talk we present a polynomial-time algorithm for solving this problem, As
a corollary we improve on the singly exponential complexity bound for the language equivalence
problem for simple grammars recently demonstrated by Caucal. .

VLSI Circuitry for a Combined Paradigm Processor
: Mark J. Neal, University of Wales

This paper considers some of the requirements and some possible structmes for the VLSI inside
a processor that contains both conventional and neural functionality. The VLSI neural hardwaze

contains a degree of programmable flexibility and a feasible design is described in terms of compo-
nents realisable with current technology. Having established the overall feasibility of such cireuitry

1 then consider an outline design of & processor that combines conventional with neural processing. ~

This type of device would provide an unpmtant resource for the construction of flexible neural
network solutions to a wide variety of real-time and/or small embedded computer systems,

On the minimal realizations of a finite sequence
Graham Norfen, University of Bristel

By a finite sequence. we mean a finite sequence of elements from a commutative domain R. Ve
develop the theory of minimal realizations of a finite sequence from first principles. Our notion of
a minimal realization generalizes the notions of a partial realization {in the sense of Kalman), of
a Padé approximation and of a linear recurring sequence.

From this theory we derive an algorithm which computes a minimal realization of a sequence
of length L in at most L{3L + 1)/2R multiplications, When R has unique factorization, owr

algorithm can be used to solve the partial realization problem. to decode cyclic codes (not only

BCH and Reed-Solomon codes. but more géneral Goppa codes), to solve linear systems over R
{extending Wiedemann's method), computing growth functions, the minimal polynomial of an R
matrix, symbolic Padé approximations and of course computing the linear complexity of an R
sequence. Thus we provide a conumon framework for solving some problems in Linear Systems
{Control), Coding and Computing.

-253-~

An Abstract Formalisation of MASCOT
Steplen Paynter, BAe Defence Lid

MASCOT, the software design notation for concurrent and embedded programs used extensively
within the UK defence industry, is briefly introduced. A case for using node labelled controlled
graph grammats to define the abstract syntax of graphical notations is argued. and a simple 12
rule grammar is given which defines the abstract syntax of a large subset of MASCOT designs.
The definition of a simple denotational semantic model for MASCOT is structured using this
granmmar, The model is defined using CSP.

Specifying software components for reuse
M Ramachandrad, Liverpool John Moores University
Software reuse has been one of the hot research topic in software engineering, However, it has
failed to keep its promises and has not address some of the fundamental research issues. One of
the approach to reuse is library based components repository { Biggerstaff and Perlis 1989). We
are unable to find a classification mechanism. There are a number issues relating to this approach:

ot

. How do we retrieve such components?

-

2, How do we specify what is required?

]

., What do we classify our application domain?

4. What are the characteristics of a retisable components?

In this salk I illustrate how a simple semantic specification of a reusable component can be
effective for reusing and retvieving from a repository. Our approach is to use simple formal
specification technique which is object-oriented and allows you to-specify the characteristics of
a reusable component. It also allows you to compose components using a simple union and
association. \We are also interested in making the notation into more natural language keywords
rather than complex notations. (Reference: Biggerstaff, T J. and Perlis, A J. {1939), Software
reusability: Vol 1 and Vol 2, Addison-Wesley),)

A New Approach To Algorithm Decomposition For Parallelism
Simon MecInlosh-Smith, University of Wales, College of Cardiff
e present a system that assists in the design of parallel programs that are to be run on distributed
memory multicomputers. The user provides a high-level algorithm description. which may or may
not contain any explicitly parallel constructs. The system then provides intelligent assistance
to help in the parallelisation process. It does this by identifying algorithmic features within the
algorithm that can form parallel constructs either directly, or by applying some transformation. A
main aim of the system is to produce readable parallel programs. A prototype system exists and
initial results indicate that the system can provide useful assistance in the parallelising process.

Algebraic Specification with Transfinite Types:
A Case Study of Evolving Algebras
L. J. Steggles, University College of Swansea

The theory of higher order algebra is a useful formalisim for computer systems specification (see
for exatuple Maller [1987]. Heering [1992]. Meinke [1992] and the case study Meinke and Steggles
[1994]). In this talk we show how to extend higher order algebra with {ransfinite types. These lead
to more expressive algebraic structures which are well suited to modelling various forms of poly-
morphism, for example families of elements of varying type. For bhis class of algebraic structuves
useful algebraic properties such as initiality and a sound and complete equational calculus can be
obtained,

We consider as a motivating case study the specification of evolving algebras (see Gurevich
[£1991]). An evolving algebra is an abstract machine in which a state is modelled by a single-sorted
algebra and state transitions are defined by transition riles on algebras. They were originally

-254-

developed as a means of providing an operational semantics for programming languages, e.g.
1SO standard Prolog (Borger and Daessler [1990]). We consider how evolving algebras can be
algebraically specified using higher order algebra with transfinite types.

{References

. Bérger and K. Daessler. PROLOG.DIN papers for discussion, in ISO/IEC JTCISC22 WG1T
N.58, National Physical Laboratory, Middlesex, page 114, 1990.

Y. Gurevich. Evelving algebras: a tutorial introduction, EATCS Bulletin, 43, pages 264-2384,
1991.

J. Heering, Implementing higher-order algebraic specifications. In: D. Miller (ed), Proceedings
of the 1992 Workshop on the LambdaProlog Programming Language. University of Penusylvauta,
Philadelphia, 1992,

Iv. Meinke., Universal algebra in higher types. Theoretical Compuler Science, 100:385-417, 1992,
K. Meinke and L. J. Stnggies Specification and verification in higher order algebra: a case study
of convolution. To appear in: J. Heering, I{. Meinke, B. Mdller and T. Nipkow (eds), Proceedings
of HOA '93: An Infernational Workshop on Higher Ovder Algebra, Logic and Term Rewriling,
LNCS Springer-Verlag, 1994.

B. Méller. Algebraic specifications with higlier-order operators. In: L.G.L./T. Meertens (ed),

Program specification and transformation. Novth Holland. Amsterdam. 1937.) (

The Algebraic Specification of Programming Languages
I Siephenson, University College of Swansea,
We propose a method to formally describe programming languages by using algebraic specifica-
tions. An algebraic specification {£, £') consists of a set of ‘equations E over the signature L.
By expressing the equdtions as rewrite rules, the specification can be transformed into a term
rewriting system (I, £). The initial model J(Z, E) of any such specification defines a S-algebra
wlhich will satisfy the equations E.

The relationship between context-free languages and closed term algebras has been well estab-
lished. Our method extends this connection to the representation of non-context-free languages
by algebraic spemﬁcation». These high-level descriptions give a natulai but formal definition of
the syntax of programuming languages.

We present a case stucly of a specification of a parallel language that 1ilustlate9 our technique,
and the ad\antages it has over traditional grammar theory descriptions.

The aim of this vesearch is directed at equationally expressing the correctness of a compiler.

Informal Prooft A proof of Morley’s theorem
Brian R, Slonebridge, University of Bristol
The notion of prool is pervasive, yet imprecise. The methodology, which starts from given axioms,
and proceeds only by prescribed inference steps of a sound system of logic, is atiractive. However,
as has been pointed out by Alan Robinson {Syracuse), unless kept under control this may lead to
a “proof” which is manageable only by a machine,

Since working theoreticians often wish to retain the hands-ou feel for their activities, they often
choose to adopt an informal approach. Although this relies on fundamentals, it may be difficult
to formalise: but. if we can, we may be able to mechanise the development of informal proofs.

Motley's theorem states that the triangle formed by the points of intersection of the adjacent
trizsectors of the angles of any triangle is equilateral, Robinson peinted out that formal geometric
proofs are known, yet they do not capture the e%entml symmetries of the problem. We provide
an informal proof, by a coustruction,

An algebraic method for analysing respounses to exercises
Paul Strickland, Liverpool John Moores University
The SLOTH system uses a rewrite-rule based approach to compare answers to student exercises
in mathematics for software engineering. The aim is to allow course lecturers to specify their
own chosen syntax and questions. while being able to analyse common mistakes and alternative
syntaxes. This allows both inmediate feedback in the tutorial environment. and also the possiblity
to specify detailed marking schemes for formal assessments.

Enhaneing temporal semantics in the database
environment to support decision making
Yuan Sun, Dilip Patel, Denise Webster and Paul Schieifer
School of Computing IT and Maths, South Bank University London

The goal of this work is to create a decision support system by utilising temporal semantics. The
research thereby intends to achieve the following goals:

1) To provide a modelling methodology which integrates data structure and behaviour for
active temporal data. :

2} To develop a representation for semantics of temporal information which will generate
multiple versions of historical information, and to develop a summary mechanism.

3) To improve database performance by increasing the degree of data sharing, and to construct
a structure for version specification of sumunarised historical data.

4} To present the query restlts both in tabular and graphical form by a specifically designed
query language or interface which will provide a platform to accommodate docision support utili-
ties, such as interpolation tools, summary specification, statistical funetions and so on.

The applications for such work can be found in safety critical systems, airline reservation
systems and business planning systems.

Verifying IMunctional Programs
Simon Thompsen, University of Kent abt Canterbury
Functional languages have the reputation of making program verification simple and elegant. This
talk will explore this proposition. In particular, it will give - a design of a logic of the Miranda
programuning language; - an overview of two projects at the University of Kent to implement the
logic: one using a system built in Miranda, the other using Isabelle,

The Inportance of Theoretical Cdmputer Science - a view from industry,
Martyn Thomas, Chairman and Founder of Praxis

Theoretical computer science suffers from two disadvantages: the argument over whether there
is such a subject (and if there is, what its corpus of knowledge contains); and the widely held
view that theoretical computer science is too distant from the industrial use of computers to
be interesting, As a result, computer science departments have come under pressure to tackie
problems that are closer to the market, to demonstrate that their research is worth spending
taxpayers money on. Often, such research projects turn out to be little more than tool-building,
and the tools are rarvely of industrial strength and never get widely used.

Yet incustrial computing faces huge problens, as shown by project overruns, failuves and the
occasional catastrophe. We in industry are tackling large-scale engineering problems, often without
suitable processes, methods, tools or components.

In this talk, Mactyn Thomas offers a view of the relevance of theoretical computer science to
some of the problems faced by industry.

