-286~-

Report of The Seventh British Colloquium on Theoretical
Computer Science
University of Liverpool, March 26-28 1991
(Sponsors: ICL Ltd and IBM UK)

As has become traditional, BOTCS was again held this year in Holy Week of Easter.
Penny Lane, made famous by the lyrics of the Beatles, provided participants with
their first approach to the comforts of Derby and Rathbone Halls, This University
of Liverpool location, set about by parkland and greenery, proved to be a happy and
relaxed choice for the conference. From here excursions to the famous cathedrals,
Mersey ferry, Albert docks, galleries and other Liverpudlian delights (including some
- excellent oriental restaurants) were possible in conference breaks. At the conference
dinner, John Tucker’s speech of thanks to the hard working local committee of Paul
Dunne (Chair), Pete Higgins, Nicos Malvris and Derek Yates echoed everyone's ap-
preciation. _

The colloquium was admirably supported by nearly forty technical presentations of
wide diversity. In particular the invited talks of eight distinguished guests (Henk
Barendregt, Alan Bundy, Martin Dyer, John Hughes, Cliff Jones, Colm O Diinlaing,
Carl Sturtivant and Brigitte Vallee) provided strength and balance to the programme.
Abstracts of all the talks may be found below.

The annual general meeting of the colloquium confirmed that the 8th British Collo-
quium for Theoretical Computer Science will be held in the University of Newcastle
in March 1992, Dr lain Stewart will be leading local organisation and he may be con-
tacted through the Department of Computer Science at Newcastle. The colloquium

was generously sponsored this year by both ICL Ltd and IBM UK.
) Alan Gibbons

=~

Abstracts
Invited Talks

Feasible I'ull Formalisation
Henk Barendregt
Catholic University of Nijmegen

Formalising reasoning started with Aristotle. Frege completed the work by providing a
complete system of logic. Russell and Whitehead provided the first formalised pieces of
mathematics. However an intultive proof becomes unreasonably long. Using formalisation
in lambda-terms and types a feasible formalisation Is possible.

Automatic Guidance of Program Synthesis Proofs
Alan Bundy
University of Edinburgh

The ‘proofs as programs’ paradigm can be used to synthesise programs from their speci-
fications, Assume that spec(inputs, output) is a logical specification of the required rela-
tionship between the inputs and outputs of the program. The program can be extracted
from a constructive proof of the formula: Vinputs. Joutput. spec(inputs, output), In order
to synthesise recursive or iterative programs, inductive proofs are required. The problem
of guiding the search for inductive synthesis proofs will be investigated, The more machine
assistance that can be provided for this task, the less human skill will be required to use
the technique and the more widely it will be adopted,

Heurlstics, adapted from the work of Boyer and Moore, have been implemented as tactics,
and used to guide an inductive proof checker, Oyster. These tactics have been partially
specified in a meta-logic, and the plan formation program, Clam, has been used to reason
with these specifications and form plans. These plans are then executed by running their

~287-

associated tactics and, hence, performing an Oyster proof. Searching in the planning space
is considerably cheaper than searching divectly in Oyster’s search space — indeed, it is even |
cheaper than plan execution,

Volume and related Computational Problems
Martin Dyer
University of Leeds

Integration in many dimensions is known to be a hard problem, It is provably difficult to
perform even approximately for the ‘simplest’ integration problem, volume computation.
By contrast, Dyer, Frieze and Kannan (1989) gave a randomized algorithm for approx-
imately computing the volume of a convex set, This, and subsequent improvements by

Lovasz-Simonovits and Karzanov-Khachyan will be described. We will also discuss some
more recent work on applications and related problems, in particular the ‘discrete volume’
problem.,

Naturality, Polymorphism and Compile-time Analysis
John Hughes
Glasgow University

Interference Resumed
C.B, Jones
University of Manchester

The rely/guarantee approach set out to extend aperation decomposition methods for se-
quential programs to cover concurrent shared-variable systems.. The essential step was to
recognise that interference has to be specified in order to achieve a notion of compositional-
ity. Ketil Stoelen’s thesis has addressed the main shortcomings of my earlier work, This talk
will describe what the author sees as the next steps towards a development method for con-
current programs. In particular a case will be made for basing assertions on Resumptions,
predicates of two states will be used, the beginnings of a collection of temporal operators
aimed at natural program correctness arguments will be indicated. A list of recognised
problems will also be discussed. ‘

Computational Problems in Geometry
Colm O Didnlaing
Trinity College, Dublin

Somne issues in algebraic complexity
Carl Sturtivant

Algorithms for Integer Factorization
Brigitte Vallee
Université de Caen

Factoring integers is a very old problem, but in the seventies, two new facts were discovered:
the introduction of complexity theory in the factoring problem, and the discovery that
factoring has applications in cryptology.

Factorization is considered to be easier than NP-complete problems and there is only his-
torical evidence that it is an intrinsically hard problem. In the RSA cryptosysiem, the
difficulty of factorization is applied, and it is a negative application,

We first describe the RSA cryptosystem, and show the cryptographic applications of the
difficulty of the factoring problem. Then we present the main methods used in integer

factoring: random squares methods, and we explain the difficulties that one meets in proving
upper bounds on the running time of these algorithms, because one has to use. certain
unproven heuristic assumptions,

We conclude by describing a new method due to Pollard, Adleman and Lenstra which is
called the number sieve algorithm. This method seems to be faster than the previous ones.

-288~

Contributed Talks

Compositional Inheritance
Jim Armastrong & Jim Howse
Brighton Polytechnic

A key design decision in object-oriented programming is whether a given program compo-
nent (class) should inherit the attributes of another component or include it in its structure.
This is a source of much debate in the object oriented community., Most guidelines are
heuristic and are really appeals to experience. However the matter can be clarified using
formal models and methods —

1. By using algebraic specification techniques to analyse inheritance relations.

2. By understanding that inheritance in object-oriented languages is actually a form of
composition, and not necessarily a means of modelling IS_A. relations.

3. By understanding that inheritance relations like IS_A can be captured by hierar-
chies of components related by composition, using a technique called compositional
inheritance, :

The algebraic techniques allow the values of objects to be denoted by terms which can then
be compared with terms denoting values of related objects. 2) involves understanding the
notion of the visibility of a given attribute, 3) involves the simple use of procedure calls,
overloading and export and import statements. These three points will be illustrated by a
simple design example.

(Stein, 1987) develops a model of the relation between delegation hierarchies and inheritance
hierarchies. This model can be extended to map inheritance hierarchies into composition-
based hierarchies. The basis of the model has already been established in (Armstrong,
1990). It will be suggested that this formal model provides a more convenient’ basis for
making design decisions than hard-won experience.

Armstrong, J.P. Inheritance, concept, mechanism and research, Inf, Tech. Research Inst,,
Tech. report, Brighton Poly. 1990) -

Stein, 1987 Delegation is inheritance, Proc. 1987 Conf. on Object-oriented Prog. Lang.,
Systems and Applications

Polymorphic Dataflow Type Inference for Term Graph Rewriting Systems
R. Banach :
University of Manchester

Term graphs are objects that locally look like terms, but globally resemble general directed
graphs. They have been a vehicle for the implementation of functional languages for many
years, but their use as a model of computation in its own right is of independent interest.
The question arises as to whether the notions of typing and of type inference have any place
in the more general term graph world. This is a non-trivial matter since the typing and type
inference familiar from the term world are based on structural induction, which breaks down
in the term graph world. It turns out that a more local notion of typing, satisfying a weaker
invariant under rewriting, can be developed for graphs. Structural induction is replaced by
dataflow analysis of the TGRS, This in turn enables type inference and polymorphism,
using unification in the conventional Hindley-Milner way, to be introduced.

Formal Mapping of Specifications to Parallel Architectures
Naima Brown and Dominique Mery
CRIN Université de Nancy and CNRS

Nowadays, new parallel architectures are being proposed to the computer science commu-
nity, Among well-known examples, like the transputer based architectures, such the T-node,
or the connection machine. The goal of these machines is to offer the programmer a more
powerful tool than the classical one. Computations need to be concurrently executed, but

-289-

the main question is to define what a concurrent computation is, and how to master the
development of implemented solutions. A local experiment in our laboratory has consisted
of developing an OCCAM program on a T-node machine, This experiment has been com-
pleted after three months of full-time work. The main result is that the T-node machine has
a very poor environment; that is why a methodology based environment is required. Hence,
the UNITY framework has been chosen as a starting point for the development of parallel
programs, and we have mainly analyzed the transformation of UNITY-like programs into
the OCCAM programming language, The mapping is not only a simple translation from
one language to another one, but it is based on a soundness criterion as a proof preservation,
PP The UNITY framework allows the development of concurrent programs from a tempo-
- ral logic-based specification language. Although it is a very powerful and attractive theory,
there are some problems that can not be directly solved in UNITY, The first problem is
the absence of a clear, and formal statement of transformation (or refinement) techniques,
The second is that no formal transformation {or refinement) theory is well-defined. More-
over, the mapping in UNITY is quickly and superficially sketched. Yet, the careful study
of problem classes with respect to the refinement notion and a restatement.of UNITY logic
have led us to explore the mapping problem in an algebraic way. We have used algebraic
techniques to modelize the mapping, Yet, we have enriched the UNITY programming lan-
guage by algebraic data types. The goal is to use data in an algebraic way, and to improve
the invariant part of UNITY using invariants of data type. .PP The UNITY specification
framework is detailed and the proof system is described. Specifications are statements of
temporal logic. Formal techniques will be introduced to ensure the correctness of speci-
fications with respect to the explicit, or implicit, underlying program., The development
framework uses the specification language and the proof system to state the soundness of
transformation rules. The principle for deriving, an OCCAM program from a UNITY one,
is to associate any UNITY variable to a specific OCCAM process that manages the variable,
The transformation is deadlock-free and is expressed in an algebraic style. The properties as
invariants become comments in the OCCAM framework, Our transformation system leads
to an executable OCCAM program. The main result is the soundness proof of the mapping:
any property of the initial specification (UNITY) is preserved by the transformation into
the implementation specification (OCCAM).

Uniformity of Shared Memory
Andrew Chin
Oxford University

Consider 2 multiprocessing system where the network topology has been hidden from the
programmer. The decision whether to implement hashing then depends on (1) the latency
to the shared memory and (2) the locality of memory accesses in the algorithm. We study
the complexity of hashing in the Block PRAM model, thereby relating this decision directly
to algorithmic issues. In particular, we show that there are universal families of high-
performance hash functions having optimal locality.

Monotonic Reasoning about Non-monotonic Funetions — or, when finding
fixed poinis you can do (almost) anything
Alan Diz
University of York

Static analysis, especially of functional programs, often results in semantic equations over
finite domains. The most complicated part of their practical solution being the solution of
recursive function equations, or equivalently finding fixed points of defining functionals.
find f:4A— Bst f=F, ie f= fiaF

Algorithms {e.g. frontiers algorithm) usually ensure that all intermediate functions are
monotonic, and so the proofs of correctness (but not necessarily the implementationt) are
straightforward. It may, however, be advantageous to use algorithms (such as pending
analysis) where intermediate functions are not monotonic. In this case, it will not usually be
the case that (even wiere F is defined) that: f < ¢ = Ff < Fg Without this proofs become

-290~

almost impossible. Happily it turns out that the functionals F of interest satisfy a stronger
property pseudo-monotonicity whereby the above holds when either of the functions f or g
is monotonic, not necessarily both, Using this we can begin to reason, about non-monotonic
functions using ‘monotonic’ arguments. Not only do proofs of existing algorithms become
possible but one realises that one has enormous flexibility in calculating fixed points. You
can do almost anything,

Integers in Ideals of Z([z], Groebner bases and a Problem of M. Newman
P. Filzpairick & G. Norton
University of Bristol

Let u, v be relatively prime polynomials in F = Z{z}. We consider the problem of construc-
tively determining the least positive integer v(u,v) representable in the form fu + gv for
some f, g € E together with suitable multipliers f, g. if the leading coefficients of « and v
are relatively prime, we show that the problem can be solved using the extended polynomial
remainder sequence algorithm of {P. Fitzpatrick and G. Norton ‘Linear recurrenice relations
and an extended subresultant algorithm’, LNCS, 388, 232-243 (1989)]. In the general case
we present a sotution based on a reduced Grébner basis for the ideal < u,v > of E generated
by wu, v, Our investigation also leads to a complete classification of reduced Gribner bases

of ideals in E.

Proof and program transformation in constructive theory
D, Galmiche
CRIN-INRIA Lorraine

For many years important works in computer science have been devoted to the study of
program construction with (and in) logical theories or frameworks. We can mention im-
portant techniques based on theorem proving and program transformation. In this paper
the aim is to study the notion of proof and program transformation in programming with
proofs framework. Programming with proofs in logical frameworks consists in extracting
programs from constructive proofs following a schema in three principal steps: specification,
proof construction and finally program extraction. But we know that, in such a framework,
some programs obtained from proofs are not always efficient or some programs can not be
derived from proofs and consequently the relationship between programs and proofs has to
be studied. '

Knowing that a proof contains more information than a program, it seems interesting to
study here the notion of program transformation through proof transformations. Here, we
investigate the transformation of proofs and programs in programming-with proofs frame-
works through techniques of generalization by abstraction with a view to deriving better
programs.

Kepwords: logical frameworks, intuitionisticlogic, programming with proofs, program transformation, generalization.

Embedding Balanced Binary Trees in the Mesh
Alan Gibbons & Mike Paterson
University of Warwick

We describe how to embed balanced binary trees in the mesh such that each mesh node
is associated with two tree nodes and such that each tree edge maps to a disjoint directed
path in the mesh (each mesh edge {u,v} being considered as two directed edges (u,v)
and (v,u)). Such an embedding improves (for example) extant running times for parallel
algorithms employing the balanced binary tree on the mesh.

~291-

Parallel Algorithms for Logic Simulation
Paul E. Dunne, C.J.J. Gittings & P.H, Leng
University of Liverpool

A Visual Verification of MergeSort
Chris Holt
University of Newcastle-upon-Tyne

Visual languages have been used to describe dataflow graphs, and the interrelationships of
objects in large software engineering projects. They can also be applied to the specification
and verification of programs, with the effect on programming "style” being a greater prefer-
ence for relations connected by retracts, This is illustrated using MergeSort as an example
of a simple, functional algorithm. '

Timed process algebra # Time X process algebra
Alan Jeffrey
Oxford University

A process algebra is one way of modelling parallel computation. Until very recently, most
process algebras had no notion of time (other than ‘eventually’ or ‘forever’) but recently a
number of timed algebras have materialized, notably the timed variant of CSP, CCS, and
ACP, These models, although developed independently, have many similarities, which I
would like to discuss.

Untimed process algebras are now reasonably understood, and the concept of a time domain
is familiar from field like temporal logic. However, the combination of the two has many
unexpected side-effects, such as the possible presence of processes which can stop time,
non-determinism becoming may-testable and the problem of instantaneous behaviour.
This talk will consist of a short survey of the filed, and a discussion of the interaction
between time and process algebra.

Parallel Program Schemas
Stephen G. Matthews
University of Warwick

The talk presénts a schema based programming model with an interleaved state transition
semantics designed for discussing language independent features of concurrent programs.
Combining ideas from both flowcharts and témporal logic is not new, however, our ‘inten-
sional’ notion of ‘interpretation’ for schemas is. We will show how Parallel Program Schemas
are equally at home in modelling monitors as they are with modelling demand-driven data

flow.

Infinite Synchronous Concurrent Algorithms — A Case Study — The Stack
Brian McConnell
Unliversity College of Swansea

We will introduce the theory of infinite synchronous concurrent algorithms, a model of par-
allel deterministic computation with infinite parallelism. The formulation and applications
of the theory are introduced. We will then present a case study of an infinite synchronous
concurrent algorithm. We study an idealised hardware stack that processes infinite streams
of data and commands and show how this is correct with respect to an (higher order)
algebraic specification. This work is joint with D. Gibby and J.V. Tucker,

The Algebra of Database Transactionst Monoids, Quantales, Faithful Actions
N.D.N. Measor
University of Leicester

A database can be specified in terms of a set of transactions from which it may be generated.
We present the transaction set abstractly as a monoid given by generators and relations.
The effects of the transactions can then be defined as an action of the monoid on the set

~292~

of states of the database, or, equivalently, as a functor from the monold to the category
of sets. The image of the monoid under this functor can be though of as a model for the
abstract monoid of transactions; the adequacy of the presentation of the monoid rests on
whether the monoid action is faithful, this being a kind of completeness question,

We can give the set of transactions a quantale structure by introducing joins into the
monoid. The action of the transaction set is then represented by a mapping from the
abstract quantale into the set of endomorphisms on a complete join semi-lattice. Each
member of this semi-lattice is a set of possible states of the database, and the morphisms
may thereforé be viewed as transition relations from one set of possible states to another.
Thus the approach lends itself to extensions based upon non-deterministic transactions and
allows us to model uncertainty in a database.

Proof based Developments of Concurrent Programs
Dominique Mery
CNRS-CRIN-URA-262
54506 Vandoeuvre-les-Nancy, France

We study the development of concurrent programs from specifications according to the
formal correctness of programs with respect to specification. A formal system manipulates
. development formulae that express a relationship between programs, specifications and
proofs. An underlying logic is chosen to prove the correctness of a given program with
respect to its specification: this system is based on UNITY logic and temporal proof systems
and it takes a contextual information into account. The development rules have been built
by generalizing manipulations on a specific case study. OQur programmiig language consists
of constructions such as sequential, parallel and non-deterministic computation but uses
these concepts at different levels. The soundness of our rules is proved according to the
derivability of the specification from the operational specification of the concurrent program.
An operational specification is a set of transition formulae interpreting the program in
an abstract way., A case study is developed in our system. The relationship with other
frameworks is sketched and especially the predicate transformer semantics,

Working with Formal Languages in the Study of the Computational
Properties of Graph-theoretic Document Models
@G. Staniford & Paul E.S. Dunne
University of Liverpool

Document models may be considered from several standpoints; the static representation, of
document structura and content, is one such standpoint and the dynamic representation in
which we model the changes that occur to a document during the course of its production
is another. A general document representation (GDR) is presented leading to the definition
of a universe {Univ) that describes the totality of GDRs. Some GDRs in Univ are not
computable; the notion of a feasible GDI is introduced and four specific examples are
defined and discussed, paying particular attention to their underlying graphical structure.

Moving from the static to the dynamic we define graph modification systems using the graph
grammar approach and introduce recent work that has been proposed for use in developing
practical systems. We helieve that some restrictions, on the nature of document structure
and hence on the freedom of the generative graph grammar rules, are essential if systems
are to be implemented using current artificial intellizence techniques that are consistent
and maintainable. Such restrictions are outlined and this leads to a discussion of future
directions for the work currently in hand; conclusions are drawn about the achievements to
date and a summary of the main points is presented to conclude the talk.

—-293-

An introduction to post-Newtonian and non-Turing computation
Mike Stannett
Dept of Computer Science, Sheffield University

In our paper [1], we described a machine model with arguably "super- Turing” computa-
tional power, In this talk, we develop this theme further. We will survey four styles of
computational model, and discuss the potential for each style to give rise to non-Turing
behaviour. The classes of model we consider are

1. Newtonian maodels ~ Turing machines, analog models, CCS

2. Post-Newtonian models — Quantum computing, relativistic considerations

[~

Restrictional models — models derived by restricting logical expressiveness

=

Algebraic Field Models - what properties should ”computable numbers” possess in
any model of computation?

We wxli also consider the relationships between the various styles of model.

This work is partially supported by the British Technology Group. {1] Stannett M, 1990
X-machines and the halting problem: building a super-Turing machine. Formal Aspects of
Computing vol. 2 pp 331-341,

The Categorical Unification Algorithm Revisited
John (. Stell
University of Keele

Substitutions may be represented as morphisms in a category, where the objects are finite
sets of variable symbols. The categorical unification algorithm provides a computation of
coequalizers in this category. We show that this is not sufficient to justify the algorithm
as a computation of most general unifiers. A clarification of the relationship between most
general unifiers and coequalizers is thus called for, and we provide this. It turns out that the
algorithm, as implemented, is correct; only its justification requires attention, We go on to
show how the relationship between coequa.hzers and most general unifiers can be generalized
to the case of order-sorted unification, and to consider to what extent this allows an order
- sorted generalization of the categorical unification algorithm,

On the Capture of Complexity Classes using Logic
Iain A. Stewart
University of Newcastle-upon-Tyne

We partially solve a conjecture of Gurevich and show that if NP N eo— NP is captured by
a logic that is closed under disjunction then NP = co— N P.-We also obtain similar results
for other complexity classes.

A Method for the Development of Totally Correct Shared-State Parallel
Programs
Ketil Stoelen
University of Manchester

A syntax-directed formal system for the development of totally correct programs with re-
spect to an (unfair) shared-state parallel programming language will be presented. The
programming language is basically a while-language extended with paralle]- and await-
constructs. The system is called LSP (Logic of Specified Programs) and can be seen as
an extension of Clff Jones’ rely/gua,rantee method. His approach is strengthened in two

respects:

e Specifications are extended with a wait-condition to allow for the development of
programs whose correctness depends on synchronisation. The wait-condition can he
given two alternative interpretations.

— It can be though of as a commitment to the implementation, In this case the
wait-condition is supposed to characterise the states in which the implementa-
tion may become blocked, The implementation is not allowed to become bloclked

~294-

inside the body of an await-statement.

— Tt can also be interpreted as an assumption about the environment. In this case
the implementation is assumed to be released whenever it becomes blocked in a
state which satisfies the wait-condition. g

e Auxiliary variables are introduced to increase the expressiveness, They are used in
two different ways.

— To strengthen a specification to eliminate undesirable implementations. In this
case auxiliary variables are used as a specification tool; they are employed to
characterise a program that has not yet been implemented.

— To strengthen a specification to make it possible to prove that a certain program
satisfies a a particular specification, here auxiliary variables are used as a veri-
fication tool, since they are employed to show that a given algorithm satisfles a
specific property.

Although it is possible to define history related variables in LSP, the auxiliary variables
may be of any type, and it is up to the user to define the auxiliary structure he prefers.
Moreover, the auxiliary structure is only a part of the logic. This means that auxiliary
variables do not have to be implemented as if they were ordinary programming variables.
LSP has been proved to be sound and relatively complete with respect to an operational
semantics. '

Examples of semicomputable sets of real and complex numbers
J. V. Tucker
University College of Swansea

Computable and semicomputable sets over amany-sorted algebra will be discussed in terms
of a general theory of computation and specification for abstract data types. Basic results,
such as Engeler’s Lemma, will be applied to alpebras of real and complex numbers. Some
recent results of Blum, Shub and Smale will be derived.

This work is joint with J.I. Zucker (McMaster)

Copy--Refusal Testing
Irek Ulidowski
Imperial College

Observational equivalence can be characterized by a testing equivalence induced by traces,
refusals, delay, copying and global testing (Abramsky 87). We argue that global testing
is unrealistic in the sense that it makes some unobservable aspects of process behaviour
observable. The question arises what the strongest testing equivalence is which does not
involve global testing., We present copy 4 refusael equivalence, ~¢gp, discussed by Phillips
(86,87) and Bloom and Meyer (90) as the prime candidate. For a derived transition system
(actions 7 abstracted away) with divergence we define a refusal simulation equivalence
~gR, & bisimulation-like relation which goneralises 2/9-bisimulation of Larsen and Skou
(88) and ready simulation of Bloom, Istrail and Meyer (88). Analogously to Abramsky’s
work we show that, for image finite processes, refusal simulation equivalence coincides with
copy + re fusal equivalence.

Further evidence to our chaice of testing equivalence is gained by considering structural
operational semantics (SOS) approach of Plotkin. We introduce a format of structured
transition rules with negative premises, called Observational SOS. The OSOS is a subset
of the GSOS format of Bloom, Istrail and Meyer and of the ntyft/ntyxrt format of Groote
and Vaandrager (88,89). However, we argue that the OSOS rules are the most general rules
which realistically describe the observational behaviour of processes without having a global
testing character, We show that ~pgg is a congruencefor 0SOS languages, We define a trace
congruence for the 0SOS contexts, =pgos, and prove that ~pg refines =ogog. Finally, we

~295-

prove that, for image finite processes, copy + refusal equivalence can be characterized by
both refusal simulation equivalence and OSOS trace congruence.

Denotational Semantics for Jackson System Development
W.L. Yeung & P, Smith
Sunderland Polytechnic G. Topping
Staffordshire Polytechnic

Communicating Sequential Processes (CSP) was initially expounded as a programming no-
tation for expressing a class of concurrent/distributed algorithms which are elegant and can
be directly implemented on multiprocessor configurations. The paradigm of CSP involves
sequential processes running concurrently and communicating with each other through mes-
sage passing only. The influence of CSP on the Jackson System Development (JSD) method
is acknowledged by Michael Jackson himself in his book. While a mathematical theory has
been developed for CSP, JSD remains as an informal method.

This research attempts to provide a formal basis for the study of the JSD method by
defining formal semantics to underpin the JSD notation based on the mathematical theory
of CSP. The formal semantics are defined in denotational style which offers a high degree
of modularity in the definition.

The benefits of this research include a better understanding of JSD, a theoretical basis for
the standardization of the method, and a rigorous basis for the development of support
tools,

A Data Model for Describing Tourist Information Requirements
Zhenhua Duan, George Row & Abdullah Hashim
University of Ulster

The Ulysses Information Self-Service Units (ISSU) is a public information system. It gives
the tourist access to a central database of information on accommodation, attractions,
travels, events, etc, The ISSU is being developed by the University of Ulster Magee College
as part of the Ulysses International project. '

In this paper, BNF is used to specify the syntax of a kind of data model for tourist in-
formation requirements. Based on this model we present an algebraic specification for the
ISSU software system so that the verification and the implementation may be carried out
in a rigorous way. Our motivation has also been to investigate techniques for developing a
realistic software system using algebraic specification theory.

A bound of efficiency achievable b)} folding/unfolding transformations
Hong Zhu
Brunel University

The power of Burstall and Darlington’s folding/unfolding system of program transforma-
tions is discussed. The following necessary condition of transformability is proved,
Theorem 1: If a recursive function f = E(f) can be transformed to g = E'(g) then there is
a constant K > 1 such that for all n > 0 E'y(L) ERn(),

The well-known partial correctness and incompleteness of the system are corollaries of the
theorem. Moreover,

Theovem 2: If the condition of Theorem 1 does not hold, there are no ‘eureka’ which can
help the transformation of f = E(f) to g = F'(g).

based on these results, the efficiency achievable by transformations is discussed. The notion
of inherent complexity of recursive programs is introduced.

Definition: Let f = E(f). The inherent complexity of f w.r.t. || is the function CHy :
N = N. CHy(n) = maz{d(z) : |2] = n where d(z) = min{t: s € Dom(E'(L))} and 2| is
the size of z.

1t is proved that

Theorem 9 The order of inherent complexity of recursive programs cannot be improved by
folding/unfolding transformations,

Since in any reasonable computation model, the time and space complexities of a recursive
program are greater than or equal to the inherent complexity, it is a bound of efficiency

~296~

achievable. According to the result, linear search algorithm cannot be transformed to binary
gearch, and quick sorting cannot be obtained from exchange sorting.

Shrinkage of de Morgan Formulae under restriction
Uri Zwick & Mike Paterson
University of Warwick

Tt is shown that a random restriction leaving only a fraction ¢ of the input variables unas-
signed reduces the expected de Morgan formula size of the induced function by at least a

factor of €235 & €163, A de Morgan formula is a formula over the basis {A, V, =}

This improves a long standing result by Subbtovskaya and a recent improvement to eg‘JC:1 T

€!'5% by Nisan and Impagliazzo,

The new exponent yie}ds an increased lower bound of Q(nlrﬁﬁ“‘(l)) for the de Morgan
formula size of a function defined by Andreev, This is the largest lower bound known for a
function in N P.

"

Report on
"Combinatorial Pattern Matching" school,
London, 17-19 April 1991.

The CPM school was held at Royal Holloway and Bedford New
College last April. The main theme of the meeting is all that
concerns strings with particular emphasis on combinatorial or
algorithmic aspects. Applications to the treatment of images, the
compression of data, the analysis of molecular sequences or the
processing of natural languages also fall into the scope of the school.

There were around thirty participants. Although the
programme was rather dense, it was light enough to allow informal
discussions between each others, And this is also one of the aims of
these meetings to put altogether "stringologists” and (advanced)
students interested in the domain.

Three mini-courses have been delivered by A. Apostolico, Z.
Galil and myself. They presented some of the most recent works on
strings, Several participants have . also presented their own
research. And the overall has been an homogeneous and very
interesting meeting. Unfortunately, we had to régret thai A.
Ehrenfeucht has been prevented to come,

The organisation has been especially efficient, thanks to the
“local committee composed of A Davies, P. Hoare, C. Iliopoulos ans A,
Johnstone. The RHBN College is well equipped to receive congresses
(Pub, shops, bank,... on the campus) and a place that deserves a visit
for its green and flowery park.

This CPM school is the second of its kind after the one held in
Paris in July 1990 (see Bulletin 42 of October 1990). All participants
agreed to meet next year probably in US around Easter. I wish the
next CPM as successful as the present school.

Maxime Crochemore.

